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and does not change its value during any shift of the 
origin of the unit cell. 

Definition 2. N-phase seminvariant (or, shortly, 
seminvariant) is any quantity which depends on N 
symmetrically independent structure-factor phases 
and does not change its value after a translation 
between any two equivalent origins of the unit cell. 

The following statements can be easily proved. 
1. Any invariant is also seminvariant. 
2. Any universal structure invariant is invariant. 
3. Any structure seminvariant is also seminvariant. 
4. Let ~ , . . . ,  ~n be seminvariants (invariants). 

Then any function ~(~1 . . . .  , qbn) of only these 
seminvariants (invariants) is also a seminvariant 
(invariant). 

APPENDIX B 

List of a priori  structure information 

I. A priori structure information necessary for the sol- 
ution of  the phase problem 

1. Measured intensities. 
2. Electron density concentrated around 

individual atoms has unimodal distribution. 
3. Overlap of electron density of different atoms 

may be neglected. 

II. Further a priori structure information used in ab 
initio methods 

4. The electron density distribution around 
individual atoms is known. 

5. Approximation of spherically symmetrical 
atoms is applicable. 

6. Approximation of scattering factors by an 'over- 
all shape factor' is applicable. 

7. Approximation of temperature factors by an 
'overall temperature factor' is applicable. 

8. The number of 'heavy atoms' (atoms which 
determine the main features of the diffraction pattern) 
is known. 

9. The number of individual types of atoms in the 
unit cell is known. 

10. Electron density is non-negative everywhere in 
the unit cell. 

l l. The crystallographic symmetry is known. 
12. The non-crystallographic symmetry is known. 
13. Interatomic vectors in the asymmetric part of 

the unit cell fill the vector space uniformly. 

III. Partial knowledge of  the structure 

14. Inner structure of atomic groups with unknown 
positions and orientations is known. 

15. The inner structure and orientation of atomic 
groups with unknown positions are known. 

16. Positions of some atoms are known. 

IV. Repeated intensity measurements under changed 
conditions 

17. Intensity measurements of isomorphous 
derivatives. 

18. Intensity measurements using the wavelength 
for which a small number of atoms shows strong 
anomalous scattering. 
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Abstract 

An a posteriori method of the determination of a 
correct set of structure-factor phases based on a com- 
parison between the trial and theoretical distribution 
functions of semivariants, using the X 2 test, makes 
possible the full utilization of a priori structure in'for- 

* Part I: Ha~ek (1984a). 

mation contained in the phase relationships. It is 
expected that the application of this method should 
raise the efficiency of existing direct methods. 

1. Introduction 

Direct methods (Giacovazzo, 1980; Ladd & Palmer, 
1980; Main, Hull, Lessinger, Germain, Declercq & 
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Woolfson, 1978; Hauptman, 1972; Karle & Karle, 
1966; Hauptman & Katie 1953) have become a widely 
used tool for the solution of the phase problem. The 
good efficiency of these methods requires the proper 
use of a priori structure information contained in the 
distribution functions of seminvariants (Hagek, 
1984a). The existing direct methods usually consider 
only the best possible fit between the trial and the 
theoretical mean seminvariant values and do not 
make full use of information on the shape of the 
distributions. The method suggested here requires an 
agreement between the whole distributions, and 
hence makes better use of the a priori structure infor- 
mation contained in the phase relationships. 

Let us define the following notions. 
Empirical distribution of  seminvariants, calculated 

for the correct set of phases, is a function 
pemp(~ ,r, R~, . . . ,  Rm) to which the frequency function 
of seminvariants for the structure under study conver- 
ges if the size of regions and intervals, in which the 
relative frequencies of seminvariants are calculated, 
go to zero in the limit, while the numbers of 
seminvariants therein approach infinity. 

Trial distribution of  seminvariants is defined as an 
empirical distribution, but the correct set of phases 
is replaced by some trial set of phases proposed by 
ab initio methods. 

True distribution of  seminvariants denotes the distri- 
bution to which the empirical distribution for the 
structure under study converges, assuming the exact 
values of phases and magnitudes. 

Theoretical distribution of  seminvariants 
pthe°r(x/-¢, R ~ , . . . ,  Rm) denotes the probability distri- 
bution of seminvariants (usually given analytically) 
derived theoretically on the basis of a priori structure 
information or semiempirically as a generalization of 
empirical distributions for a number of different struc- 
tures. 

Following these definitions a correct solution of 
the phase problem can be found among a certain 
number of trial solutions according to the best fit 
between the trial and true distributions of 
seminvariants. However, since the true distribution 
of seminvariants remains unknown until the structure 
is known, it must be approximated in our procedures 
by a suitable theoretical distribution. Thus, the basic 
principle lies in finding such a set of phases, whose 
trial distribution of seminvariants gives the optimal 
fit with the corresponding theoretical distribution 
which is assumed to be a sufficiently exact approxima- 
tion of the true distribution. 

2. Empirical and trial distributions of seminvariants 

The joint probability distribution of seminvariants 
ptheor(~[¢, R~ , . . . ,  Rm) is generally a function of the 
seminvariant value ~ and of m magnitudes 
R~, . . . ,  Rm. The m-dimensional space of magnitudes 

may be divided into regions so that for arbitrary 
R~,... ,  Rm values in the same region, the function 
pthe°r(~lRi , . . . ,R , , ,  ) assumes approximately the 
same values for a fixed ~ value. Then, it can be 
assumed that seminvariants belonging to the same 
region of magnitudes correspond approximately to 
the same one-dimensional conditional distribution 
p t h e ° r ( ~ ] R l , . . . ,  R,,,) and the relative frequencies 
of randomly selected semiinvariant values which 
occur in various intervals of ~ values may be 
used as an estimate of the empirical conditional 
distribution p e m p ( ~ F ] R i , . . . ,  Rm). 

Let the total number of seminvariants in a selected 
region be denoted by N and the probability that a 
randomly selected seminvariant from this region falls 
into the ith interval of ~ by Pi. Then the numbers of 
seminvariants x l , . . . ,  Xr falling into the individual 
intervals of ~ are given by a multinomial distribution 
(cf. Appendix A).* This distribution may be approxi- 
mated in the limit for N--> oo by the r-dimensional 
normal distribution (Bickel & Doksum, 1977) 

P(x)=(27r) -N/2 det ( M - i )  1/2 

xexp [ - 1 / 2 ( x -  Np)M- ' (x -  Np)], (1) 

where the vector X=--(X~,...,Xr), the vector p=-- 
( p ~ , . . . ,  p,) and M -~ is a matrix of rank ( r -  1) inverse 
to the variance-covariance matrix M, the diagonal 
elements of which are 

var (xi) = Npi(1 -p i )  (2) 

and off-diagonal elements 

cov (xi, xj) = - Npipj. (3) 

Thus, by increasing the number of randomly selec- 
ted seminvariants the relative frequencies Qemp_ 
x J N  approach the theoretical probabilities p~ that 
the selected seminvariant lies within the ith interval 
with a variance tr~ -- [pi(1 -p~ ) /N]  ~/2. Since for N --> oo 
we have tr~ -> 0, the relative frequency of seminvariants 
in the ith interval of 7 t, 

Q~mp=xi/N, (4) 

is a consistent estimate of the true probability p~ (see 
Appendix A). The Q e.mp values calculated using (4) 
approximate at several points the conditional proba- 
bility distribution of seminvariants P(~IR~,..., Rm) 
for fixed values of the magnitudesfl 

* Appendices A, B and C have been deposited with the British 
Library Lending Division as Supplementary Publication No. SUP 
39114 (10 pp.). Copies may be obtained through The Executive 
Secretary, International Union of Crystallography, 5 Abbey 
Square, Chester CHI 2HU, England. "]" 

? It is possible to estimate the joint probability distribution 
directly, but, to diminish problems arising from irregular distribu- 
tions of seminvariants in different regions, it is better to substitute 
for the empirical joint probability distribution the renormalized 
frequency function composed of a number of one-dimensional 
conditional distributions for individual regions of magnitudes. 
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An example of the possible form of the distribution 
function of seminvariants is shown in Fig. 1. To draw 
the function Q(~ ,  R ~ , . . . ,  Rm)= Q(~ ,w)  in three 
dimensions, the m-dimensional space of magnitudes 
is represented by a vector w = ( R l , . . . ,  Rm). The m- 
dimensional space of magnitudes is considered to be 
divided into regions and every region is further 
divided into intervals according to the value of the 
seminvariant. Equation (4) allows an estimate of the 
distribution in one region of magnitude, i.e. an esti- 
mate of just one profile in Fig. 1. To obtain the 
description of the whole distribution, the calculation 
must be repeated for each region of magnitudes. The 
relative frequency of seminvariants of the kth type 
belonging to the j th  region and to the ith interval is 
then 

Qemp= Nok/N~k, (5) ijk 

where N~k is the number of the seminvariants in the 
j th  region, the value of which lies in the ith interval, 
and N~k is the total number of seminvariants in the 
j th  region. The calculated /-~emp ~ / j k  values are expected 
to better approximate the empirical distribution, the 
smaller the regions of magnitudes and the greater the 
numbers of seminvariants in the individual regions 
of magnitudes. 

In the case of special seminvariants, the phases of 
which can assume only two values owing to the crys- 
tallographic symmetry, the condition (5) gives 

Q e m p  / , ~ e m p  Uk = 1--,¢2jk (6) 

for all the regions j = 1 , . . . ,  n and all the distribution 
types k = 1 , . . . ,  s. Hence, to obtain a full description 
of an empirical distribution, it is sufficient to calculate 

/ , )emp= Nljk/Njk value for each region. only one ,e ljk 
Evidently, r~mp ~ l j k  is an estimate of the probability ,o~mPuk 

that a seminvariant of the kth type belonging to the 
j th  region assumes just the value belonging to the 
first interval. An estimate of the probability of a 
positive sign for centric structure seminvariants is 

pemp=/ - ' l emp  = N+jk/Njk, +jk ~ ijk (7) 

where N+jk is the number of structure seminvariants 
which assume the value 0 mod (2zr) and Njk is the 
total number of structure seminvariants in the j th  
region. An example of such a distribution is shown 
in Fig. 2. 

/ ~ t r i a l  t, Dt r ia l~  A trial distribution of seminvariants ~,~ijk ~ , ' + j k )  is 
calculated using the same formalism, only the correct 
set of phases is replaced by a trial one, proposed by 
ab initio methods. 

3. Theoretical distribution function 

The probability distribution of any seminvariant can 
be calculated from the assumed distribution of rj 
vectors (for fixed H vectors) or from the assumed 
distribution of diffraction vectors H (for fixed r~ vec- 
tors.* In the first case, where the position vectors of 
atoms or of groups of atoms are taken as primitive 
random variables, it holds that with increasing num- 
ber of randomly chosen structures the probability 

P(~FIRL,..., R,,,) d ~  dRL . . .  dRm converges to the 
fraction of seminvariants of a given type, whose 
values ~ and magnitudes R~, . . . ,  Rm lie in the range 
of integration limits. 

In the second case,t where the diffraction vectors 
H ~ , . . . ,  Hr are taken as primitive random variables, 
whereas the structure is fixed, with increasing number 
of randomly chosen seminvariants ~ of a given type, 

* In practice, the same probability of  finding any atom or any 
group of  atoms at any site in the unit cell or a random choice of  
diffraction vectors H in reciprocal space is usually assumed. 

f It should be noted that the second case corresponds to the 
procedure employed in the calculation of the empirical distri- 
bution. 

Fig. 1. An example of  the distribution of acentric seminvariants. 
The (m + 1)-dimensional space of parameters of  the distribution 
Q(gt, w) is divided into regions of w = f ( R t  . . . . .  R,,) and into 
intervals of  ~. 

o .(w) 

80"/.' 

60°1,- 

!!!!!!! 
i . . 1 / . i ,  

w 
0.5 1 1.5 2.0 2.5 

Fig. 2. An example of  the centric seminvariant distribution. The 
m-dimensional space of  parameters of the distribution Q÷(w) is 
divided into regions of magnitudes w - f ( R ~ , . . . ,  Rm). 
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the probability ~ P'(~O'IRI,. . .  , Rm) d g  r d R , . . . ,  dRm 
converges also to a fraction of those seminvariants 
~, which assume values within the integration inter- 
val 1/, and whose magnitudes R , , . . . ,  Rm lie in the 
range of integration limits. 

Since the position vectors of atoms r and the diffrac- 
tion vectors H appear in any seminvariant only 
through the product Hr, the same distribution of 
seminvariants p ( ~ l R , , . . . ,  Rn) is obtained in both 
cases, assuming the same distribution of scalar pro- 
duct, Hr, although their interpretation is different 
(Hauptman & Karle, 1953). The equivalence of the 
two distributions allows us to use the theoretical 
distributions of seminvariants obtained by both pro- 
cedures for comparison with the empirical distribu- 
tions estimated using the relative frequencies of 
seminvariant values. 

In the case of acentric seminvariants* (i.e. of quan- 
tities which can be expressed as a monotonic function 
of one or several structure seminvariants, at least one 
of which is acentric) the distribution 
p(gt, R , , . . . ,  Rm) is generally a function of (m + 1) 
variables. If all the structure seminvariants qbi (i = 
1 , . . . ,  s) forming the seminvariant ~ are centric, the 
distribution P ( ~ [ R ~ , . . . ,  Rm) is discrete, and the 
seminvariant ~ may assume 2 s values at most. Hence, 
the total joint probability distribution can be fully 
described using (2 s -  l) m-dimensional functions. In 
particular, in the case where the seminvariant 1/, is 
regarded as a function of only one centric structure 
seminvariant, the distribution is fully described by a 
single function, P~,o(R,, . . . ,  Rm). For centric struc- 
ture seminvariants the description of the distribution 
P (~ ,  R , , . . . ,  Rm) is reduced to the description of the 
probability that the structure seminvariant • assumes 
the values 0 or 7r, corresponding to a positive or a 
negative sign of the respective structure-factor pro- 
duct. Since the probability of the positive sign P+-- 
1 -  P_, the distribution can be adequately described 
using merely the m-dimensional function P+ which 
expresses the probability that the structure 
seminvariant assumes just the value 0. 

Suppose that the theoretical distribution is identical 
with the true distribution of seminvariants. For the 
correct set of phases and fixed magnitudes 
R , , . . . ,  Rm, the relative frequency of occurrence of 
randomly chosen seminvariants in the interval 
( ~ ,  ~ + , )  approaches in the limit for increasing num- 
ber of seminvariants its theoretical value 

x/'i+ , 

Qtheor= ~ P ( ~ I R I , . . . , R m )  d ~ ,  (8) 

corresponding to the probability that a randomly 
chosen seminvariant lies in the interval (aFi, gri+,) ' 

* F o r  the  d i f f e rence  b e t w e e n  ' c en t r i c '  a n d  ' c e n t r o s y m m e t r i c '  see 
R o g e r s  (1965). 

supposing that the normalizing condition is fulfilled. 
However, comparatively large regions of magnitudes 
are necessary to achieve sufficiently high numbers of 
seminvariants for the calculation of r}emp '¢Uk values. 
Then, assuming a random choice of seminvariants, 
the relative frequency /-)emp 'e0k approaches in the limit 
for Njk--> oo the theoretically derived value 

Q t h e o r  m 
ijk -- V ~  l ~ P k (  ' / ' I R ~ ,  . . . , gin) d R y . . ,  d R m  d ti t, 

(9a) 

where integration runs over the ith interval of 1/, 
values and over the j th  region of magnitudes. The 
normalizing constant Vjk is 

Vjk = ~ Pk( ~ ' IR, ,  . . . , R , )  d R , . . ,  dR,,, d ~ ,  

where integration proceeds over the whole j th  region 
and all possible seminvariant values. 

It very often happens in practice that there are 
small numbers of non-uniformly distributed 
seminvariants within the individual regions of magni- 
tudes. Then, the estimate of the theoretical distribu- 
tion by the mean value of contributions from the 
individual seminvariants in the corresponding region 
is expected to be a better approximation of the 
empirical probability distribution, 

Qtheor. N~'E$Pk(1FIR,,, Rml)d~.  (9b) ijk :- • • • , 

l 

The summation over the index I runs over all Nj 
seminvariants contained in the j th  region of magni- 
tudes where t he / th  seminvariant has phasing magni- 
tudes R,l,  . . . , Rmt. 

If a linear approximation of the probability density 
is sufficient in the interval (~,,. ~i+- ,).. the __ijkO~he°r value 
will be close to the theoretical probability density for 
the mean value (~-f)i in this interval: 

Q t h e o r  
uk -[~g, - g',+, Pk((~),I(R,>j , . . . ,  (Rm>,), (9c) 

where the normalization condition 

[~F, - ~,+21Pk(( ~ ) , ( R , ) j , . . . ,  (Rm)j) = 1 
i = l  

must be fulfilled for every region (j = 1 , . . . ,  n) and 
every distribution (k = 1 , . . . ,  q), r being the number 
of intervals. It is obvious from (9a), (9b), (9c) that 

__ /-~theor 
0 ~ ~ijk - -  1 a n d  

/-~theor 'eUk = 1 for every j, k. (10a) 
i = i  

For seminvariants which, owing to the crystallo- 
graphic symmetry, may assume only two values, the 
normalizing condition (10a) is reduced to 

Q t h e o r  /,-itheor ljk = 1 -- "e2jk for every j, k. (10b) 
/ '}theor For centric structure seminvariants, ,¢,jk is 

equivalent to the probability D t h e ° r  --÷jk of a positive sign 
of the corresponding structure-factor product. It can 
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easily be proved, in this case, that the expressions (9) 
are reduced to 

ptheor  _ . .  +jk - V-fk' I P+k(R, ,  . . . , Rr,,) d R , .  d R ,  

ptheor - -  Rmt) + j k  - -  N ~  i r, P + k ( R l t , .  . . ,  
1 

ptheor ___ P+k((R,)j, (R,.)j). 
+ j k  " " " , 

( l l a )  

( l l b )  

( l l c )  

4.  D i s t r i b u t i o n - f i t t i n g  m e t h o d  

The frequency function of seminvariants converges 
for the correct set of phases and for increasing num- 
bers of randomly selected seminvariants to the true 
distribution. Thus, using exact magnitudes, the 
empirical distribution is a consistent estimate of the 
true distribution. Thus, no trial distribution, calcu- 
lated for an incorrect set of phases, can approximate 
the true distribution better than the empirical one. Of 
course, in practice, the unknown true distribution has 
to be replaced by the corresponding theoretical distri- 
bution. Hence, the basic principle of the phase- 
problem solution by direct methods should consist 
of finding such a set of phases, for which the trial 
distribution of seminvariants fits best the correspond- 
ing theoretical distribution. The discriminative power 
of the method depends greatly on the uncertainty in 
the theoretical estimation of the true distribution. 
Thus, the choice of a good theoretical or semiem- 
pirical approximation of the true distribution and the 
analysis of expected differences have to be given 
special care. However, in this paper, only the general 
formalism of the distribution-fitting method will be 
considered. The analysis of the individual distribution 
types will be given later, in the discussion of practical 
results using these methods. 

There are three basic measures of the fit between 
two distributions that can be used to find the trial 
distribution which fits best the corresponding theo- 
retical one. 

1. A comparison of the trial and theoretical proba- 
bility distributions by their function values. Usually, 
the set of phases which gives the minimum sum of 
squared deviations is expected to be the correct one 
(X 2 test). 

2. A comparison of the characteristic functions 
corresponding to the theoretical and trial probability 
distributions, i.e. a comparison of the low-order distri- 
bution moments. 

3. A test of maximal difference between the corre- 
sponding theoretical and trial cumulative probability 
distributions (Kolmogorov test). 

Only some simple tests related to the first procedure 
have been described previously (e.g. Hagek, 1974, 
1979). The second procedure may be related to a 
number of figures of merit frequently used in direct 
methods. However, most of them compare only 
characteristics related to the first distribution 

moments, thus losing significant amounts of a priori  
structure information. Reviews of these methods may 
be found in Schenk (1980) and Ladd& Palmer (1980). 
The utilization of information on second distribution 
moments has been described by Hagek (1975). The 
third method analysing the fit between the cumulative 
distributions of seminvariants has not yet been used. 
These three methods will be dealt with separately. 
The first, being of primary importance, is discussed 
below. 

M i n i m i z a t i o n  o f  the s u m  o f  weighted  squared  dev ia t ions  

Comparison of the theoretical and empirical proba- 
bility distributions of seminvariants by their function 
values shows that a suitable criterion of the best fit 
[see Appendix B, equations (B4), (B6)]* is the 
minimum of the sum of quadratic forms 

K = ~ ( Q t r i a l  _ i ~ t h e o r ~ . , H  - 1 trial t h e o  j -<j ,~--j (Qj - Q j  3, (12) 
J 

where d/j -l is an inverse matrix to the variance- 
I '~ trial - -  t" /-) tr ial  /,-)trial~ covariance matrix, vectors ,ej =~,elj , . . . ,  ,ee ,, 

K-~theor __ [ f ~ t h e o r  / ' ~ t h e o r  h ,ej =~,¢tj , . . - , ' ¢ r j  ) and the summation runs 
over all regions of magnitudes R l , . . . ,  Rm. 

If the theoretical distributions describe exactly the 
corresponding true probability distributions, the 
criterion (12) would give a minimum-variance 
unbiased estimate of structure-factor phases. 
However, owing to the differences between the theo- 
retical and true distributions, the reliability of the 
estimator is restricted by the extent of a priori  struc- 
ture information and by approximations made in the 
calculation of the theoretical distributions used in the 
test. 

If q various types of seminvariants are tested, the 
criterion of the fit can be written as a sum of quadratic 
forms corresponding to the individual distributions 
[Appendix B, equation (B9)].* In each of these quad- 
ratic forms the matrix at/i '  can be replaced by a 
generalized inverse to the matrix ~a'j (see Appendix 
C).* Thus, the sum of the quadratic forms Kk is 
reduced to the weighted sum of squares of the differ- 
ences Qtr ia l  Qtheor. 

A general criterion for a determination of the most 
probable set of structure-factor phases is then 

q "k ~k 
K y. ~ y . .  ,,-,tria~ Qthk~Or)2 (13) 

= W i j k ~ l ~ i j k  - -  . .  . 

k = l  j = l  i=1  

/ , ) t r i a l  f l t h e o r  Only ( r j k -  1) values of ','Ok and V0k are indepen- 
dent for fixed indexes j, k because of constraints 
E ~ =  f ~ t r i a i  r f l t h e o r  I It~'/J k = 1 and E l = ,  ~ i j k  = 1. The index /.runs 
over rjk intervals of the seminvariant values,t the 

* See deposit ion footnote.  
t If  anomalous  scattering is neglected, probabili ty distributions 

are symmetrical  around zero and therefore it is convenient  to deal 
with absolute values of  structure seminvariants,  so that the compu- 
tation is kept in the interval (0, zr). 



J. HASEK 345 

index j runs over nk regions of magnitudes and the 
index k runs over q various probability distribution 
types. The most probable set of phases is denoted by 
the minimal value of the distribution-fitting coefficient 
(13). 

The weights WOk generally depend on the type of 
the seminvariant, on the respective region and inter- 
val, on the quality of a priori  structure information 
contained in the theoretical distributions and on the 
restrictions and approximations used in their deriva- 
tion. The relative importance of seminvariants in 
intervals corresponding to small or high ~ values can 
be stressed or lowered depending on the index i. 
Depending on the index j, the weights WOk express a 
measure of the reliability of the determination of the 

/-)tHai /-~theor differences ~ i j k  - - ~ i j k  in the individual regions of 
magnitudes. 

Let us suppose that the function values of the 
/-itheor theoretical distribution 'eOk represent exactly the 

function values of the true distribution in the whole 
area tested. Then the differences between the 
empirical and theoretical distributions are described 
by a multinomial distribution [see Appendix A 
equation (A l)]*, converging for increasing number 
of randomly selected seminvariants to the normal 
distribution (1). The general inverse matrix Vjk to the 
variance-covariance matrix -¢/jk (the indices j ,  k 
denote the region of magnitudes and seminvariant 

/~/- /3theor A/-theor type) has diagonal elements ff~ l " q j k ~ r j k  = 1,1 r jk  , 

and off-diagonal elements v J r ] ( r # s )  are zero. 
Neglecting all other sources of errors and using rela- 
tive frequencies instead of numbers of seminvariants 
[see Appendix B, equation (B4)],* one obtains the 
weights wok in (13): 

/~,r 2 / ~,rtheor = Njk//-~theor (14) 
W i j k  ~-  l "~ j k /  l ~ i jk  ~'~ i jk  • 

Under these conditions the distribution-fitting 
coefficient is 

~ n . ~  ~ / f~triai f~theo.2 
K = Nj k ~.~/jk -- ~Uk ] (15) [-~theor 

k j i ~0k 

and, with the normalizing condition (10a), 

~k ~ .  k [ ~ .  k t'/'~trial'2 ] 
K = /Vjk ~'¢0k ) 1 (16) /-~theor 

• ~'(/k 

In the procedures usually employed for the calcula- 
tion of trial sets of phases, seminvariants of a certain 
type (usually triplets) are preferred and moreover they 
are restricted to seminvariants belonging to a special 
region of magnitudes (e.g. only to triplets with high 
values of [E,EKE_,_,,I). All sets of phases thus 
derived already give a comparatively good fit in the 
regions of magnitude used in their calculation. There- 
fore, it is advantageous to consider especially those 
regions of magnitudes in which the fit has not yet 

* See deposition footnote. 

been ensured by any means, and such types of 
seminvariants which have not been used in the 
calculation of the trial sets. For example, if triplet 
relations are used for the calculation of trial sets, 
then the quartets, especially in regions corre- 
sponding to the mean theoretical value of quartet 

= ~iOH "at- ~K + ~L "t- ~O_H_ K -L  = "17 or Ir/2 mod (21r), 
are of great importance (Schenk, 1980; Ladd & Palmer 
1980). The optimal choice of the proper types of 
probability distributions, the division of space into 
regions and intervals, and the optimal choice of 
weights, so that a prior i  structure information can be 
used in the most effective way, requires further 
extensive study. 

Spec ia l  s e m i n v a r i a n t s  

It has been shown in preceding sections that in the 
case of special seminvariants which, owing to the 
crystallographic symmetry, can assume only two 
values (e.g. centric structure seminvariants), the 
description of distribution is reduced to the descrip- 
tion of the probability that the seminvariant assumes 
one of the two possible values. From (6) and (10b) 
the distribution-fitting coefficient (13) may be written 
as 

. x,' ~,-~trial f~theor~2 (17) 
K = Y~ ~, (Wuk + ~V2jk)t~/Uk -- '¢Uk J • 

k j  

If the weights are chosen according to (14), then 

~ . Njk trial f~theor~2 
K =  .- ~ Q~h~°r(i~Q~h~°3(Qljk--1 '~lJ k , 1 .  (18) 

In the case of centric structure seminvariants, the 
Qtrial f-ltheor Uk and ,¢ Uk values have the meaning of the prob- 
abilities of a positive sign for the corresponding struc- 
ture semivariants Demp Dthe°r --+jk and --+jk, respectively. 
Moreover, if only one type of probability distribution 
is used in the test, the summation over the index k 
can be omitted in (18) and the distribution-fitting 
coefficient for centric seminvariants is 

ffff ---~ ~ . ~" ntrial ptheorh2 (19) 
W j l  I -  + j  - - - - + j  ] • 

J 

/~r / p t h e o r (  1 - -  p theor~  where w j = a . t j l . t + j  ~ .  ~t+j j .  T h e  coefficient X' 
defined for triplet relationships (Ha~ek, 1974) is 
similar to (19) with the difference that the contribu- 
tions of highly reliable triplets were stressed by 
weighting. The efficiency of this coefficient was 
tested using the chlorate of 4,4'-bis(dimethyl- 
amino)diphenylamine radical (space group PI) and 
cis- 1,3,5-trichlorocyclohexane (space group C 2 / c ) .  

5. Conclusion 

Success of the phase-determining procedure depends 
on the quality of the a prior i  structure information 
used. The first source of this information is a sufficient 
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number of experimentally derived magnitudes of the 
normalized structure factors describing the simplified 
structure (non-vibrating point atoms). The second 
source, also necessary for the solution of the phase 
problem, is concealed in the function form of the 
distributions of seminvariants. Unlike all the preced- 
ing methods, the distribution fit proposed here makes 
full use of structure information contained in the 
seminvariant probability distribution functions and 
so is expected to be more powerful and efficient. The 
procedure outlined in this paper has been treated 
only from a general point of view. The optimal choice 
of the theoretical distribution functions, the determi- 
nation of the generalized coordinates and the selec- 
tion of seminvariants for the test so as to ensure an 
economic and reliable determination of the correct 
set of phases is discussed in the following papers 
(Ha~ek, 1984b, c). 

The author thanks Dr K. Huml for valuable com- 
ments on this work. 
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A b s t r a c t  

The proposed method of determination of the correct 
set of phases of structure factors enables in principle 
full benefit to be taken of a priori structure informa- 
tion contained in the probability distributions of 
seminvariants. Unlike the direct comparison of the 
probability distributions discussed in the preceding 
paper, the method discussed here, by neglecting the 
moments of higher orders, allows concentration on 
the main characteristics of the distributions taken for 
the test. The basic principle of the method for determi- 
nation of the correct set of phases using the fit between 
moments of the theoretical and trial distributions has 
been widely used in different modifications. However, 
most of these figures of merit compare only first 
distribution moments. In many cases this results in 
insufficient discriminating ability. The comparison of 

* Part II: Ha~ek (1984b). 
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the second moments raises the effectiveness of these 
methods and may be useful in the last stage of the 
phase-problem solution. The utilization of moments 
of higher orders may be dangerous, especially using 
the global coefficient of moments fitting and in the 
case of a small number of seminvariants (unreliable 
determination of higher moments). The method of 
successive comparison of moments of different orders 
seems to be more reliable and economical. It permits 
the survey of a large number of potential solutions, 
thus increasing the likelihood that a correct solution 
is included. From the economic point of view, it is 
convenient to include only those regions of magni- 
tudes and those distribution types which have not 
been used in the preceding step of the search of the 
trial solutions. It explains the excellent results 
obtained using figures of merit based on the special 
seminvariant types, e.g. NQEST, NQC [De Titta, 
Edmonds, Langs & Hauptman (1975). Acta Cryst. 
A31,472-479; Schenk (1974). Acta Cryst. A30, 477- 
481]. 
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